Decidability of the extension problem for maps into odd-dimensional spheres
نویسنده
چکیده
In a recent paper [3], it was shown that the problem of existence of a continuous map X → Y extending a given map A → Y defined on a subspace A ⊆ X is undecidable, even for Y an even-dimensional sphere. In the present paper, we prove that the same problem for Y an odd-dimensional sphere is decidable. More generally, the same holds for any d-connected target space Y whose homotopy groups π k Y are finite for k > 2d.
منابع مشابه
Circle Actions on Homotopy Spheres Not Bounding Spin Manifolds
Smooth circle actions are constructed on odd-dimensional homotopy spheres that do not bound spin manifolds. Examples are given in every dimension for which exotic spheres of the described type exist. A result of H. B. Lawson and S.-T. Yau [15] implies that homotopy spheres not bounding spin manifolds do not admit effective smooth S3 or S03 actions. On the other hand, G. Bredon has shown that ev...
متن کاملAlgorithmic aspects of branched coverings II. Sphere bisets and their decompositions
We consider the action of mapping class groups, by preand postcomposition, on branched coverings, and encode them algebraically as mapping class bisets. We show how the mapping class biset of maps preserving a multicurve decomposes into mapping class bisets of smaller complexity, called small mapping class bisets. We phrase the decision problem of Thurston equivalence between branched self-cove...
متن کاملConvex hulls of spheres and convex hulls of disjoint convex polytopes
Given a set Σ of spheres in E, with d ≥ 3 and d odd, having a constant number of m distinct radii ρ1, ρ2, . . . , ρm, we show that the worst-case combinatorial complexity of the convex hull of Σ is Θ( ∑ 1≤i6=j≤m nin ⌊ d 2 ⌋ j ), where ni is the number of spheres in Σ with radius ρi. To prove the lower bound, we construct a set of Θ(n1+n2) spheres in E , with d ≥ 3 odd, where ni spheres have rad...
متن کامل0 D ec 2 01 5 NONCOMMUTATIVE LINE BUNDLES ASSOCIATED TO TWISTED MULTIPULLBACK QUANTUM ODD SPHERES
We construct a noncommutative deformation of odd-dimensional spheres that preserves the natural partition of the (2N + 1)-dimensional sphere into (N + 1)many solid tori. This generalizes the case N = 1 referred to as the Heegaard quantum sphere. Our twisted odd-dimensional quantum sphere C∗-algebras are given as multipullback C∗-algebras. We prove that they are isomorphic to the universal C∗-al...
متن کاملHigher dimensional geometries related to Fuzzy odd-dimensional spheres
We study SO(m) covariant Matrix realizations of ∑m i=1 X 2 i = 1 for even m as candidate fuzzy odd spheres following hep-th/0101001. As for the fuzzy four sphere, these Matrix algebras contain more degrees of freedom than the sphere itself and the full set of variables has a geometrical description in terms of a higher dimensional coset. The fuzzy S is related to a higher dimensional coset SO(2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete & Computational Geometry
دوره 57 شماره
صفحات -
تاریخ انتشار 2017